

PROVA DE BIOLOGIA 2014

Instituto de Biologia UFBA

INSTRUÇÕES

Esta prova deverá ser respondida pelos candidatos da I Olimpíada Baiana de Biologia. Para a realização desta prova, você recebeu este Caderno de Questões e duas Folhas de Respostas.

NÃO AMASSE, NÃO DOBRE, NÃO SUJE, NÃO RASURE AS FOLHAS DE RESPOSTAS.

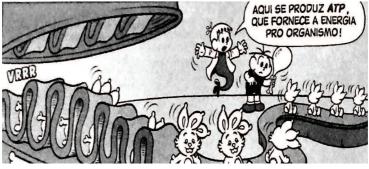
1. Caderno de Questões

- Verifique se este Caderno de Questões contém a seguinte prova:
 BIOLOGIA 30 questões objetivas e 01 questão analítico-expositiva.
- Neste caderno, você encontra dois tipos de questões:
- Questões objetivas de múltipla escolha questão contendo 5 alternativas, indicadas pelas letras A,B,C,D e E.
 - Para responder a esse tipo de questão, você deve:
- Identificar a alternativa correta;
- Marcar, na Folha de Respostas, a letra correspondente.
- Questão analítico-expositiva questão que permite ao candidato demonstrar sua capacidade de produzir, integrar e expressar ideias a partir de uma situação ou de um tema proposto.

2. Folhas de Respostas

- As Folhas de Respostas são pré-identificadas, isto é, destinadas exclusivamente a um determinado candidato. Por isso, não podem ser substituídas, a não ser em situação excepcional, com autorização expressa da Coordenação dos trabalhos. Confira os dados registrados no cabeçalho e assine-o com caneta esferográfica de TINTA PRETA ou AZUL-ESCURA, sem ultrapassar o espaço reservado para esse fim.
- Na Folha de Respostas das questões objetivas de múltipla escolha a marcação da resposta deve ser feita preenchendo-se o espaço correspondente com caneta esferográfica de tinta preta ou azul. Não ultrapasse o espaço reservado para este fim.
- Na Folha de Resposta da questão analítico-expositiva, você deve utilizar o espaço destinado à redação da questão.
- O tempo disponível para a realização da prova e o preenchimento das Folhas de Respostas é de 04 (quatro) horas.
- Qualquer irregularidade constatada neste Caderno deve ser imediatamente comunicada ao fiscal de sala.

PROVA DE BIOLOGIA


QUESTÕES de 01 a 30

INSTRUÇÃO:

Para responder a essas questões, identifique APENAS UMA ÚNICA alternativa correta e marque a letra correspondente na Folha de Respostas.

QUESTÕES 01 e 02

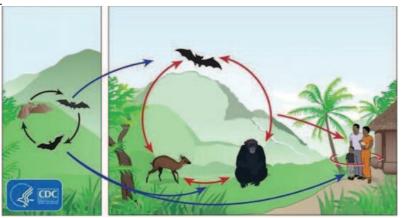
A ilustração representa, de modo lúdico, aspectos de um importante processo bioenergético.

Questão 01 (Peso 2)

A imagem apresentada faz alusão explícita à fisiologia de uma organela identificada como

- A) sistema Golgiense, realizando a distribuição de moléculas de ATP para toda a célula.
- B) retículo endoplasmático rugoso com ribossomos funcionais acoplados em suas membranas.
- C) mitocôndria que, em suas cristas, realiza a transferência de elétrons com a participação de enzimas específicas.
- D) lisossomo que exige energia do ATP para manutenção de um pH ácido em seu lúmen.
- E) cloroplasto, rico em tilacoides, que converte energia luminosa em energia química do trifosfato de adenosina.

Questão 02 (Peso 2)


A análise da ilustração, no contexto da respiração celular, permite afirmar corretamente o seguinte:

- A) As trinta moléculas de ATP resultam de fosforilação ao nível do substrato em todas as etapas do Ciclo de Krebs.
- B) O NAD⁺ combina-se de forma irreversível com hidrogênios liberados na glicólise e durante a síntese de acetil-CoA.
- C) O ciclo de Krebs contribui com a produção de moléculas de NADH⁺H⁺ e FADH₂ resultantes de reações de desidrogenação.
- D) A glicose não deve ser considerada a "estrela do show da respiração", pois seu papel é restrito à fosforilação oxidativa pela ATPsintase.
- E) A frutose é produzida a partir da glicose na matriz mitocondrial, com gasto de duas moléculas de ATP.

QUESTÕES de 03 a 05

O infográfico mostra o ciclo do Ebolavírus, associado ao recente surto de mais de três mil mortes

na África Ocidental

Questão 03 (Peso 3)

Sob uma abordagem ecológica, a análise das interações apresentadas, é correto afirmar:

- A) Os morcegos, ao se alimentarem de sangue humano, funcionam como vetores do ebolavírus.
- B) A transmissão entre humanos, através de fluidos corporais, está implicada no atual surto registrado na África.
- C) Os humanos, como reservatórios naturais do vírus ebola, só contraem a doença quando estão imunodeprimidos.
- D) O agente etiológico da epidemia ora verificada, inclui morcegos, antílopes e macacos.
- E) A virulência do ebola revela uma antiga relação ebolavírus—ser humano, iniciada desde a origem de *Homo sapiens*.

Questão 04 (Peso 2)

Considerando os seres vivos representados na ilustração, sob uma perspectiva taxonômica, é correto afirmar:

- A) Todas as espécies pertencem ao mesmo gênero no sistema de cinco reinos.
- B) Os humanos são incluídos em um domínio diferente do domínio ao qual pertencem os demais organismos.
- C) O grau de parentesco entre antílopes e macacos é maior do que entre os grandes macacos e os humanos.
- D) Humanos e morcegos compartilham características até o nível de família.
- E) Morcegos, antílopes e macacos integram três ordens de uma mesma classe.

Questão 05 (Peso 2)

O ebolavírus, como representante de uma organização supra molecular, caracteriza-se por

- A) realizar metabolismo anaeróbico com baixo rendimento energético.
- B) possuir envoltório membranoso formado por uma monocamada de fosfolipídios.
- C) apresentar reprodução por processo de divisão simples, mesmo em ambiente não celular.
- D) expressar organização octaédrica definida pela associação de DNA e RNA com moléculas de carboidratos.
- E) conter as informações genéticas necessárias ao seu processo de automontagem.

QUESTÕES 06 e 07

A caatinga ocupa hoje 11% do território brasileiro, estendendo-se por aproximadamente 845 mil quilômetros quadrados (Km²). Está dividida em oito ecorregiões – todas elas distribuídas em paisagens, tipos de solos e vegetações bastante distintos –, nas quais as chuvas podem não atingir os mil milímetros (mm) ao longo do ano. "Em algumas áreas a estiagem pode chegar a 11 meses". Esses fatores ambientais têm, ao longo de milhares de anos, exigido respostas adaptativas específicas das plantas locais, o que lhes permite sobreviver num ambiente cada vez mais quente e seco. (ANDRADE, 2013).

Questão 06 (Peso 2)

Entre as respostas desenvolvidas pelas plantas da caatinga, ao longo do tempo, destaca-se:

- A) Transformação do caule em espinhos, distribuídos em toda a sua extensão, reduzindo, assim, a evapotranspiração.
- B) Reprodução por propagação vegetativa, uma vez que não apresentam flores, para economizar energia.
- C) Fixação noturna de CO₂ que será utilizado na fotossíntese durante o dia.
- D) Formação de folhas finas e alongadas que impedem a desidratação.
- E) Crescimento contínuo da planta pelo alongamento das células do caule, estimulado pelo clima quente.

Questão 07 (Peso 3)

A ocorrência na vegetação da caatinga de plantas não encontradas em nenhum outro ecossistema, caracteriza-as como

- A) indivíduos alóctones, deslocados de seu ambiente original para o semi-árido.
- B) espécies endêmicas, altamente adaptadas como resultado de pressões evolutivas.
- C) organismos cosmopolitas, ajustados às condições únicas da caatinga.
- D) espécimes pioneiros em sucessões ecológicas secundárias, resultantes de seleção balanceada.
- E) plantas exóticas, incapazes de estabelecer interações ecológicas na comunidade.

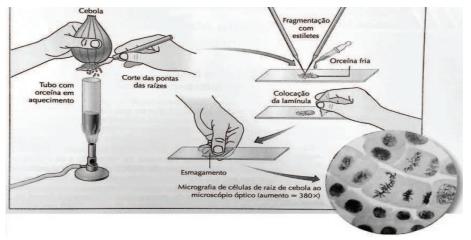
QUESTÕES 08 e 09

Pesquisadores ambientais dedicam-se ao estudo e avaliação dos efeitos da industrialização sobre os oceanos. Além da redução da população e de áreas cada vez mais degradadas pela poluição, os cientistas dizem que os mares do planeta estão sendo contaminados por uma substância letal, altamente tóxica e de difícil dispersão na natureza: o mercúrio. Estudo recente mostra que o volume de concentração de mercúrio em "águas rasas" – até 100 metros de profundidade – dos oceanos cresceu quase 400% no último século e meio. Contamina peixes, crustáceos e algas e amplia o risco de danos à saúde humana. O constante consumo de alimentos contaminados pode levar a uma contaminação crônica no corpo humano, sendo o Sistema Nervoso Central o mais atingido. (NUNES, 2014, p.92)

Questão 08 (Peso 2)

O problema ambiental destacado no texto está associado ao fenômeno de

- A) perda de habitats aquáticos, com extinção de espécies, repercutindo em erosão da variabilidade genética.
- B) acumulação progressiva do poluente nas cadeias tróficas, caracterizando o processo de magnificação.
- C) degradação da comunidade marinha, devido à alta concentração de mercúrio por eutrofização natural.
- D) aumento da capacidade de absorção de outros metais, provocando o aquecimento das "águas rasas".
- E) transformação do mercúrio orgânico em inorgânico ao longo do ciclo biogeoquímico próprio desse metal.


Questão 09 (Peso 3)

Considerando aspectos da origem e morfofisiologia do sistema nervoso, é correto afirmar:

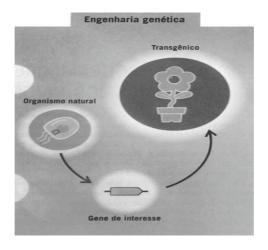
- A) Células gliais, por sintetizarem e secretarem os neurotransmissores, favorecem o aumento da velocidade do impulso nervoso.
- B) Sinapses, de modo geral, permitem o fluxo direto da corrente elétrica de um neurônio para outro, através da fenda sináptica.
- C) Células nervosas se diferenciam tardiamente no curso do desenvolvimento a partir do mesoderma.
- D) Arcos reflexos circuitos nervosos simples envolvem a medula espinhal que atua de modo independente do cérebro.
- E) Axônios mielinizados, em que a condução do impulso nervoso realiza-se de forma lenta, possibilitam o refinamento das respostas motoras.

QUESTÕES 10 e 11

A figura ilustra etapas da preparação de uma lâmina de raiz de cebola pela técnica de esmagamento e destaca uma visão microscópica de fases do processo mitótico.

Questão 10 (Peso 2)

Em relação ao procedimento experimental ilustrado, é correto afirmar:


- A) A escolha das pontas das raízes se fundamenta na presença de meristema, tecido com intensa proliferação celular.
- B) A lamínula colocada sobre o material biológico permite maior ampliação da imagem ao microscópio.
- C) O aquecimento das pontas das raízes desnatura a celulose, o que desorganiza o núcleo, permitindo a fragmentação dos cromossomos.
- D) A cebola constitui o material adequado, pois é formada por células diferenciadas, ideais para a visualização do núcleo em divisão.
- E) A orceína é usada com o objetivo de bloquear a divisão celular em etapas específicas, possibilitando melhor visualização.

Questão 11 (Peso 2)

A análise das células mostradas na imagem, revela

- A) a presença numerosa de células com núcleos compactos, evidenciando a ausência de material genético.
- B) a ausência de células em anáfase, etapa em que os cromossomos não podem ainda ser visualizados.
- C) a compactação da cromatina em cromossomos, que atinge seu nível máximo na metáfase, fase em que são melhor visualizados.
- D) a existência de núcleos em estágio de prófase, realizando a replicação do DNA antes do período de crescimento citoplasmático.
- E) o deslocamento de cromátides irmãs para os polos, sem a participação do fuso mitótico, originando células geneticamente distintas.

Questão 12 (Peso 4)

A figura apresenta esquema simplificado de etapas básicas em procedimentos desenvolvidos na área da engenharia genética, tecnologia que inclui a

- A) produção de um organismo transgênico, revelando a universalidade dos processos básicos de expressão gênica.
- B) substituição do genoma do organismo a ser modificado pelo genoma do organismo natural.
- C) inserção de um novo gene em um organismo, equivalendo a uma mutação silenciosa que altera as sequências de bases do DNA do organismo receptor.
- D) aplicação restrita às plantas, considerando a ausência de um sistema próprio de regulação gênica em vegetais.
- E) remoção de íntrons no DNA original para a construção do gene de interesse a ser inserido no organismo que se deseja modificar.

QUESTÕES 13 e 14

Um casal de indivíduos do grupo sanguíneo A teve em sua prole uma criança \mathbf{X} , cujo tipo de sangue é diferente do de seus pais.

Questão 13 (Peso 2)

Com base nos princípios da hereditariedade e nas relações alélicas para esse sistema sanguíneo (ABO), a probabilidade de nascimento de outro bebê com tipo de sangue igual ao do seu irmão é

A) nula

C) 0.5

E) 1

B) 0,25

D) 0,75

Questão 14 (Peso 2)

Considerando a importância da compatibilidade dos grupos sanguíneos do sistema ABO para transfusões de sangue seguras, é correto afirmar:

- A) Indivíduos com o grupo sanguíneo igual ao da crianca **X** são considerados doadores universais.
- B) O casal referido não possui aglutinogênios em suas hemácias.
- C) A relação alélica I^A=I^B>i confere compatibilidade sanguínea entre indivíduos I^A I^A e I^B I^B.
- D) A criança **X** pode receber sangue de seus pais, pois não apresenta aglutininas em seu plasma.
- E) A aglutinação de hemácias ocorre entre os aglutinogênios do receptor e as aglutininas do doador, presentes, relativamente, em maior quantidade.

Questão 15 (Peso 3)

Em relação à natureza do tecido sanguíneo e à origem de suas células, é correto afirmar:

- A) As propriedades de diapedese e fagocitose, essenciais à resposta inflamatória, são comuns a todas as células sanguíneas.
- B) O plasma, parte líquida do sangue, caracteriza-se pela presença de pigmentos respiratórios nele dissolvidos.
- C) O tecido hematopoiético, origem das células sanguíneas, é constituído de células totipotentes.
- D) As funções desempenhadas pelo sangue atestam o seu papel na integração sistêmica.
- E) A formação das diferentes linhagens de células do sangue segue um mesmo processo de diferenciação.

QUESTÕES 16 e 17

Weismann (1834-1914), em experimento célebre, cortou a cauda de camundongos ao longo de cinco gerações e constatou que nenhum dos 901 descendentes nasceu com uma cauda rudimentar em razão do tratamento cirúrgico. Esses resultados confirmavam a sua teoria que admitia serem os gametas os únicos veículos da hereditariedade. (RUMJANEK, 2014, p).

Questão 16 (Peso 2)

O experimento de Weismann é considerado célebre porque

- A) comprovou a teoria de seleção natural elaborada por Darwin para explicar a diversidade biológica.
- B) refutou a ideia de Lamarck de que modificações adquiridas são transmitidas à prole.
- C) fortaleceu o pensamento de Van Helmont, defensor da hipótese da geração espontânea.
- D) contribuiu para a aceitação de suposições pré-formistas vigentes desde a época de Aristóteles.
- E) esclareceu o problema de como se processa o mecanismo da hereditariedade, fundamentando o trabalho de Mendel.

Questão 17 (Peso 2)

Uma visão atual da afirmação "os gametas são os únicos veículos da hereditariedade", de Weismann, considera os gametas como

- A) estruturas que, ao se unirem, restituem a haploidia, característica da célula ovo.
- B) células totipotentes que, individualmente, são capazes de originar todos os tipos celulares que constituem um organismo.
- C) linhagens germinativas de uma espécie que, em sua normalidade, apresentam diferentes números de cromossomos.
- D) células somáticas que, por processos de multiplicação, geram células especializadas para a reprodução.
- E) portadores dos genes que contêm codificadas as informações para a formação de um novo indivíduo.

QUESTÕES de 18 a 20

Estudos que comprovam a importância da microbiota – bactérias que colonizam o corpo humano – foram realizados com animais de laboratório (camundongos) nos quais a microbiota foi de algum modo manipulada. De início, camundongos eram tratados com antibióticos, que reduziam a níveis mínimos a população microbiana em seu intestino, e os efeitos desse tratamento eram registrados e investigados. Em seguida, foram desenvolvidos métodos mais sofisticados para o estudo da microbiota. Camundongos paridos por cirurgia cesariana eram mantidos em condições totalmente assépticas, na ausência de qualquer tipo de micro-organismo. Esses animais eram chamados germ-free (livres de germes). Durante seu crescimento, em laboratório, diversos aspectos fisiológicos eram monitorados. Estudos como estes levaram à identificação de papéis fundamentais da comunidade microbiana na saúde dos animais (e, por extensão, na saúde humana). (ANTUNES, 2014, p.28).

Questão 18 (Peso 4)

Entre as funções desempenhadas pela microbiota humana, sob uma abordagem ecológica destaca-se

- A) a substituição do sistema imune pela produção bacteriana de anticorpos humanos específicos.
- B) a proteção do organismo contra micróbios patogênicos por controle do tamanho de suas populações.
- C) a produção de nutrientes que fornecem energia para sustentar o metabolismo de células intestinais.
- D) o controle do ciclo reprodutivo das células do epitélio das mucosas que revestem o tubo digestório.
- E) a síntese de antibióticos naturais que reduzem a incidência de doenças alérgicas ativando o sistema imune.

Questão 19 (Peso 3)

Organismos que constituem a microbiota humana apresentam, entre suas características,

- A) citoplasma bastante compartimentado, delimitando vesículas com enzimas e pH particulares.
- B) propriedade de organização em grandes colônias heteromorfas localizadas em micro habitats, em regiões específicas.
- C) comportamento nutricional heterotrófico, dependendo de fontes exógenas na obtenção de energia para suas atividades.
- D) revestimento celular formado, predominantemente, por moléculas de celulose associadas a lipídios.
- E) incapacidade metabólica, razão pela qual dependem do hospedeiro para sua sobrevivência.

Questão 20 (Peso 2)

Sobre o intestino delgado, é correto afirmar:

- A) Apresenta vilosidades que possibilitam maior eficiência na absorção de nutrientes.
- B) Desloca o bolo alimentar em direção ao intestino grosso independente de peristaltismo.
- C) Possui rede sanguínea própria que transporta os componentes do quimo.
- D) Sintetiza pigmentos e sais atuantes na emulsificação de gorduras.
- E) Produz ácido clorídrico nas criptas intestinais, acidificando o lúmen intestinal.

QUESTÕES 21 e 22

Cientistas estão recenseando microrganismos de plantas, e não apenas as centenas de bilhões encontradas em solos. Comunidades microbianas distintas vivem em raízes, folhas e entre flores e, segundo se estima, a magnitude de sua diversidade genética conjunta é de 3 a 6 ordens superiores à de suas plantas hospedeiras. (SMITH, 2014, p. 15).

Questão 21 (Peso 3)

A grande diversidade genética do microbioma em relação à sua planta hospedeira, deve estar associada à

- A) alta taxa de mutações que se expressam praticamente sem intervalos de uma geração para outra.
- B) seleção artificial do tipo unidirecional provocada pelo sistema de manipulação realizada por agricultores.
- C) recombinação gênica restrita à ocorrência de permuta, devido ao seu ciclo haplodiploide.
- D) inexistência de reprodução assexuada, gerando clones idênticos a partir de uma única bactéria.
- E) ausência de proteinas que compactam o DNA bacteriano em pequenos cromossomos os plasmídios.

Questão 22 (Peso 2)

Considerando a evolução de raízes, folhas e flores no Reino Plantae é correto afirmar:

- A) Raízes, com função de transporte de seiva, surgiram entre as briófitas.
- B) A realização da fotossíntese aeróbica exige tecidos clorofilados específicos de folhas.
- C) Flores coloridas e com outros atrativos representam uma conquista das angiospermas.
- D) O estabelecimento de vasos condutores ocorre, pela primeira vez, entre as gimnospermas.
- E) Plantas com raízes e folhas, seguramente, desenvolverão frutos com sementes em seu interior.

QUESTÕES de 23 a 25

Biólogos descobriram que as experiências de vida de animais roedores, como a exposição a certos poluentes ou eventos estressantes, pode afetar a saúde de seus descendentes sem modificar o seu DNA. Essas exposições podem ter efeitos multigeracionais em filhos e netos através de suas ações diretas em espermatozoides e óvulos, como foi verificado experimentalmente.

Questão 23 (Peso 4)

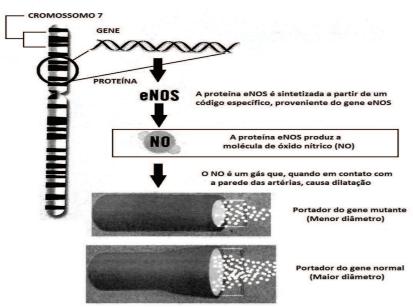
A partir das informações, pode-se inferir:

- A) As características epigenéticas, criadas em resposta a poluentes e agentes estressores, são transitórias, não persistindo por mais de uma geração.
- B) Um embrião no estágio de oito células é menos suscetível à ação de poluentes, devido ao reduzido número de células atingidas pelo tratamento.
- C) A ocorrência de problemas de saúde por mais de uma geração é restrita a descendentes, cujo pai foi submetido a estressores e poluentes.
- D) O efeito nocivo mais abrangente ao longo das gerações decorre de exposição direta de células germinativas de fetos a poluentes.
- E) O comprometimento da saúde dos descendentes sem afetar o DNA, significa herança mitocondrial que não envolve material genético.

Questão 24 (Peso 3)

Uma abordagem evo-devo (evolução-desenvolvimento) da situação descrita permite afirmar:

- A) Espermatozoides e óvulos têm a mesma contribuição no início do processo de desenvolvimento do filhote.
- B) Células do embrião incipiente até a formação da mórula multiplicam-se rapidamente, com fases S e M seguidas, sem períodos de crescimento.
- C) Neurônios, por seu nível de especialização, são as células que mais tardiamente, na organogênese, formam o tubo neural.
- D) Tecidos são formados no começo da blástula quando o embrião já apresenta os três folhetos embrionários.
- E) Células germinativas de fetos identificados como fêmeas iniciam o período de proliferação ao começar a fase reprodutiva do indivíduo.


Questão 25 (Peso 3)

Em relação a aspectos anátomo-fisiológicos, roedores, como mamíferos, apresentam, entre suas características,

- A) coordenação dos sistemas nervoso e endócrino desempenhada pelo hipotálamo, constituinte do cérebro.
- B) coração tricavitário em que ocorre uma pequena mistura de sangue venoso e arterial ao nível do ventrículo.
- C) hemoglobina constituída por uma única cadeia polipeptídica que, independentemente do grupo heme, transporta O₂.
- D) excreção de resíduos nitrogenados sob a forma de ácido úrico, eliminado sem dispêndio de água.
- E) saco vitelino e alantoide bem desenvolvidos, cumprindo com eficiência a nutrição e remoção de toxinas e metabólitos.

QUESTÕES de 26 a 28

A figura ilustra aspectos envolvidos na produção da enzima eNOS (óxido-nítrico-sintetase endotelial) e sua repercussão na dilatação das artérias.

Em portadores do gene mutante, a dilatação das artérias durante o exercício é menor, quando comparada à dilatação em portadores do gene normal

Questão 26 (Peso 3)

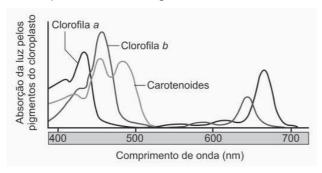
A partir da análise da ilustração, é correto afirmar:

- A) A rota gene-proteína inclui, preferencialmente, o processo de tradução.
- B) Diferenças no diâmetro das artérias são dependentes de *splicing* alternativo no transcrito primário do gene eNOS.
- C) Características fenotípicas, como dilatação das artérias, envolvem vias metabólicas específicas.
- D) A síntese de RNAm ocorre simultaneamente à biossíntese de proteínas, realizada em ribossomos livres.
- E) O óxido nítrico constitui o produto gênico da informação codificada pelo gene eNOS.

Questão 27 (Peso 4)

Considerando aspectos citogenéticos que podem ser inferidos a partir da ilustração, é correto afirmar:

- A) A variação no gene eNOS exemplifica uma condição de linkage genes ligados no cromossomo 7.
- B) A transmissão do gene eNOS segue o padrão de herança autossômica.
- C) As faixas claras representam genes detectados em intensa atividade durante a mitose.
- D) A posição do centrômero no cromossomo representado o define como metacêntrico.
- E) As regiões teloméricas são reconstruídas pela telomerase, sintetizada "de novo" em cromossomos metafásicos.


Questão 28 (Peso 2)

Artérias são vasos sanguíneos caracterizados por

- A) conduzir sangue arterial no circuito ventrículo direito-pulmões, na pequena circulação.
- B) direcionar o fluxo sanguíneo com menor velocidade que as veias, considerando a espessura de suas paredes.
- C) possuir a maior área na rede de distribuição sanguínea em relação aos demais vasos.
- D) conter válvulas ao longo de sua extensão que impulsionam o sangue na circulação sistêmica.
- E) apresentar paredes espessas e elásticas que suportam altas pressões do sangue bombeado pelo coração.

QUESTÕES 29 e 30

Os espectros de absorção de luz pelos pigmentos dos cloroplastos e a taxa de fotossíntese estão representados nos gráficos.

Questão 29 (Peso 4)

A análise do espectro de absorção de luz pelos pigmentos dos cloroplastos envolvidos na fotossíntese permite afirmar:

- A) Os carotenoides, absorvendo energia luminosa, podem transformá-la em energia química.
- B) A presença de clorofilas "a" e "b" garante a eficiência da fotossíntese, independente do comprimento de onda da luz.
- C) As folhas verdes são as únicas com capacidade fotossintética, considerando que refletem a luz verde.
- D) Os comprimentos de onda da luz, nas faixas entre 450nm e 500nm e na faixa de aproximadamente 680nm, são os mais eficientes na fotossíntese.
- E) A absorção de luz por foto-autótrofos aquáticos, por possuírem apenas clorofilas, limita sua localização à superfície da água.

Questão 30 (Peso 3)

Considerando uma abordagem mais ampla do processo da fotossíntese, é correto afirmar:

- A) A transformação de energia luminosa em química se concretiza apenas na fase escura, quando a energia das ondas luminosas é diretamente aprisionada nas ligações químicas da glicose.
- B) A ação da luz se expressa em toda a sua magnitude na fase clara, momento em que ocorre a fotólise da água e a geração de ATP e NADPH.
- C) O ciclo de Calvin, como uma etapa meramente enzimática, ocorre sem respaldo químico da fase luminosa.
- D) A liberação de O₂ durante a fotossíntese é o fenômeno que, diretamente, assegura o estabelecimento e manutenção das cadeias tróficas.
- E) A fotossíntese, tendo se estabelecido após a respiração, teve repercussão menor na expansão da vida nos continentes, no cenário da Terra em seus primórdios.

QUESTÃO ANALÍTICO-EXPOSITIVA

INSTRUÇÕES:

- Responda à questão, com caneta de tinta AZUL ou PRETA, de forma clara e legível.
- Caso utilize letra de imprensa, destaque as iniciais maiúsculas.
- O rascunho deve ser feito no espaço reservado junto à questão.
- Na Folha de Resposta, utilize APENAS o espaço correspondente.
- Será atribuída pontuação ZERO à questão cuja resposta
- não se atenha à situação apresentada ou ao tema proposto;
- esteja escrita a lápis, ainda que parcialmente;
- apresente texto incompreensível ou letra ilegível.
- Será ANULADA a prova que
- esteja assinada fora do local apropriado;
- possibilite a identificação do candidato.
- O DNA dos cromossomos se enrola ao redor de cada "esfera" de histonas. A depender da intensidade com que o DNA envolve o grupo de histonas, e do fato de esferas adjacentes se afastarem ou se agruparem, conjuntos inteiros de genes podem ser ativados ou desativados.
- [...] Embora células trabalhem arduamente para proteger a sequência de DNA nos cromossomos de quaisquer alterações, modificações são incorporadas ao genoma. (SKINNER, 2014, p. 36).

Com base na análise das informações e fundamentado em conhecimentos da Biologia Celular e Molecular

- a) apresente a relação entre afastamento e agrupamento de "esferas" de histonas e a expressão gênica;
- b) explique o significado de "proteger" a sequência de DNA nos cromossomos de quaisquer alterações.

RASCUNHO

RASCUNHO

REFERÊNCIAS

QUESTÕES 06 e 07

ANDRADE, R. de O. As muitas faces do sertão. **Revista pesquisa FAPESP**. São Paulo, ed. 209, jul.2013 in: http://revistapesquisa.fapesp.br/2013/07/12/as-muitas-faces-do.sertao/. Adaptado.

QUESTÕES 08 e 09

NUNES, A. C. Ambiente sustentável. ISTOÉ. São Paulo, ano 38, n. 2334, 20 ago. 2014.

QUESTÕES 16 e 17

RUMJANEK, F. A culpa é só dos pais?. Ciência Hoje, Rio de Janeiro, v. 53, n. 316, jul. 2014.

QUESTÕES de 18 a 20

ANTUNES, L. C. M. A microbiota humana. Ciência Hoje. Rio de Janeiro, v. 53, n. 316, jul. 2014.

QUESTÕES 21 e 22

SMITH, P. A. Amizades foliares. Scientific American Brasil. São Paulo, ano 13, n. 148, set. 2014.

QUESTÃO ANALÍTICO-EXPOSITIVA

SKINNER, M.K. Um novo tipo de herança. **Scientific American Brasil.** São Paulo, ano 13. n. 148, set. 2014. Adaptado.

Fontes das ilustrações

QUESTÕES 01 e 02

SOUSA, M. D. A memória perdida. Cebolinha. São Paulo, n. 91, jul. 2014, p. 12-13.

QUESTÕES de 03 a 05

http://www.cdc.gov/vhf/ebola/resources/virus-ecology.html. Adaptada.

QUESTÕES 10 e 11

AMABIS, J.M; MARTHO, G.R. **Biologia das células.** v. 1, 3. ed, São Paulo: Moderna, 2009, p.131. Adaptada.

QUESTÃO 12

ROCHA, R. S.; KOIDE, T. Biologia sintética. **Ciência Hoje**, Rio de Janeiro. v. 53, n.315, jul. 2014, p. 34. Adaptada

QUESTÕES de 26 a 28

DIAS, R. G. Da leitura do DNA ao doping genético. **Ciência Hoje**. Rio de Janeiro, v. 53, n. 316, Jul. 2014, p. 18. Adaptada.

QUESTÕES 29 e 30

CAMPBELL, N.A.; REECE, J.B. **Biologia.** Tradução: Anne D. Villela, 8. ed. Porto Alegre: Artmed, 2010, p.191. Adaptada.

E-mail: obabio@ufba.br Site: www.olimpiadadebiologia.ufba.br